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Abstract

This article introduces a Bayesian method for testing the axioms of additive conjoint measure-

ment. The method is based on an importance sampling algorithm that performs likelihood-free,

approximate Bayesian inference using a synthetic likelihood to overcome the analytical intractabil-

ity of this testing problem. This new method improves upon previous methods because it provides

an omnibus test of the entire hierarchy of cancellation axioms, beyond double cancellation. It does

so while accounting for the posterior uncertainty that is inherent in the empirical orderings that are

implied by these axioms, together. The new method is illustrated through a test of the cancellation

axioms on a classic survey data set, and through the analysis of simulated data.
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1 Introduction

This note introduces and illustrates likelihood-free, Bayesian method for empirically testing additive

conjoint measurement (ACM) axioms (Luce & Tukey, 1964). The axioms define the empirical

conditions under which interval measurement scales can be constructed; and so hence, there are

strong motivations for defining methods to test such axioms (e.g., Michell, 1990).

The new Bayesian method provides an omnibus test of the entire hierarchy of cancellation

axioms, based on an approximate Bayesian approach to sampling the posterior distribution of model

parameters. This approach makes use of a synthetic likelihood, instead of the exact model likelihood

which is analytically-intractable. This is intractable because the hierarchy of cancellation axioms,

together, imply a complex and highly-interdependent set of order constraints on the parameters.

Before introducing the Bayesian omnibus testing method in Section 2, and illustrating it through

the analysis of survey data and simulated data, we briefly review its key related concepts in the

following subsections. This includes reviews of ACM theory (§1.1); previous Bayesian approaches

to testing the ACM’s cancellation axioms (§1.2); the pooled-adjacent-violators algorithm (§1.3),

and the original synthetic likelihood method (§1.4). Section 3 provides conclusions.

1.1 The Theory of Additive Conjoint Measurement (ACM)

ACM theory states that if a dependent variable is an additive function of two independent variables,

then all three variables can be mapped onto a common interval scale (e.g., Domingue, 2014).

More formally, in psychometric terms, if X denotes a set of persons and if Y is a set of test items,

then this function has the form zij = f(xi, yj) = g(xi) +h(yj), where zij ∈ Z, xi ∈ X , yj ∈ Y, with

f : X × Y → Z = R; and f(xi, yj) ≥ f(xi′ , yj′) when the probability of a correct response (θij) for

person xi on item yj exceeds the probability of a correct response (θi′j′) for person xi′ on item yj′ . A

well known example of an additive function is given by zij = f(xi, yj) = log{θij/(1−θij)} = βi−δj ,
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the Rasch (1960) model with person ability parameters βj and item diffi culty parameters δi. This

model can be easily extended to polytomous items.

The triple (X ,Y,≥) is called an additive conjoint structure if the following axioms hold:

(1) Single cancellation (independence): if f(x1, y1) ≥ f(x2, y1), then f(x1, y2) ≥ f(x2, y2) for all

y2 ∈ Y, and if f(x1, y1) ≥ f(x1, y2), then f(x2, y1) ≥ f(x2, y2) for all x2 ∈ X ;

(2) Double cancellation: if f(x1, y2) ≥ f(x2, y1) and f(x2, y3) ≥ f(x3, y2), then f(x1, y3) ≥

f(x3, y1) for all x1, x2, x3 ∈ X and all y1, y2, y3 ∈ Y, in a 3× 3 matrix;

(3) Solvability : for all x1 ∈ X , and for y1, y2 ∈ Y, there is one x2 ∈ X , where f(x1, y1) = f(x2, y2);

(4) Archimedean Condition: no value of a quantitative variable is infinitely larger than any other

value (Michell, 1990, p.73).

These four axioms, together, define the suffi cient conditions for the existence of interval scales (Luce

& Tukey, 1964, Theorems VID through VIJ); and imply the existence of functions ϕ1 : X → R

and ϕ2 : Y → R that are unique up to linear transformation, such that f(x1, y1) ≥ f(x2, y2) ⇔

ϕ1(x1) + ϕ2(y1) ≥ ϕ1(x2) + ϕ2(y2).

The solvability and Archimedean axioms are not empirically testable. However, necessary and

testable conditions for these axioms are given by the hierarchy of cancellation axioms. They include

single, double, triple, quadruple cancellation, and higher-order cancellation (Scott, 1964). For

example, one instance of triple cancellation requires that if f(x2, y1) ≥ f(x1, y2), f(x1, y4) ≥

f(x2, y3), and f(x3, y4) ≥ f(x4, y3), then f(x3, y1) ≥ f(x4, y2), for all x1, x2, x3, x4 ∈ X and all

y1, y2, y3, y4 ∈ Y, in a 4× 4 matrix.

The hierarchy of cancellation conditions are highly-interdependent. For example, while there

are 36 possible orderings of a 3 × 3 matrix that satisfy double cancellation, only a small subset

of these orderings are logically-independent when single cancellation holds (Domingue, 2014, p. 7;
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Michell, 1988; Luce & Steingrimsson, 2011; and the references therein). Also, while there are 51

orderings of a 4×4 matrix that satisfy triple cancellation, many of these orderings either contradict

the single cancellation axiom, or are trivially true when double cancellation holds (Kyngdon &

Richards, 2007). Such complex interdependencies have led some authors to consider cancellation

tests only on a small sub-matrix of the data, instead of the entire data set (e.g., Kyngdon, 2011).

1.2 Previous Bayesian Approaches to Testing the Cancellation Axioms

Let θ = (θij)I×J ∈ [0, 1]IJ be a matrix of correct response probabilities, for I groups of persons

(for i = 1, . . . , I) on J dichotomous test items (for j = 1, . . . , J). Each group i has a common total

score on the test, a suffi cient statistic for the Rasch model’s ability parameter. Then, the hierarchy

of cancellation (HC) axioms, up to order min(I−1, J−1)−1, implies that θ lies in a proper subset

AHC of [0, 1]IJ . Also, AHC is a proper subset of ASC , ADC , ATC ,. . ., corresponding to values of

θ that satisfy single cancellation (SC), double cancellation (DC), triple cancellation (TC), and so

on. Further, θ ∈ ADC when all
(
I
3

)(
J
3

)
of the 3 × 3 sub-matrices of θ satisfy double cancellation.

And, θ ∈ ATC when all
(
I
4

)(
J
4

)
of the 4× 4 sub-matrices of θ satisfy triple cancellation.

Given a set of data from a sample of persons’ individual responses to J items, the matrix

θ̂ = (θ̂ij = rij/nij)I×J gives the maximum likelihood estimate (MLE) of θ. Here rij is the number

of nij persons in score group i who correctly answered item j, with θ̂ij the proportion correct.

Table 1 presents a data set (θ̂) that was analyzed in a classic study of ACM and the Rasch

model (Perline et al., 1979). The data were obtained from 490 released convicts who individually

responded to a survey of nine dichotomous items. The survey was used to make parole decisions

(Hoffman & Beck, 1974). The survey items are: (1) Grade Claimed; (2) Auto Theft; (3) Age at

First Commitment; (4) Prior incarcerations; (5) Drug History; (6) Planned Living Arrangement;

(7) Employment; (8) Prior Convictions; (9) Parole Revoked. Each item response was scored either
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Raw Item Number
Score 6 1 8 7 4 9 2 3 5 of persons

1 .00 .00∗ .00∗ .00∗ .00∗ .00∗ .27∗ .00∗ .73∗ 15
2 .06 .04 .04∗ .19 .06∗ .23∗ .51∗ .21∗ .64∗ 47
3 .07 .15 .08 .39∗ .18∗ .33 .61 .52 .67 61
4 .18∗ .24∗ .12 .40∗ .52 .51 .64 .68 .70∗ 84
5 .13∗ .33 .30 .51 .73 .68 .68∗ .84 .78∗ 82
6 .13 .28 .64 .58∗ .95 .91 .77∗ .97 .78∗ 86
7 .17∗ .47∗ .85∗ .82 1.0∗ .93 .90 .97 .90∗ 60
8 .17∗ .85∗ 1.0∗ .98∗ 1.0∗ 1.0∗ 1.0 1.0 1.0 47
9 1.0∗ 1.0∗ 1.0∗ 1.0∗ 1.0 1.0 1.0 1.0 1.0 8

sum = 490

Table 1: The proportion of correct answers for each item in groups by raw score, for the Parole
data (from Table 2 of Perline et al., 1979). An asterisk (*) indicates a proportion violating the
hierarchy of cancellation axioms according to its Kullback-Leibler measure exceeding .01. This is
based on the Bayesian axiom testing method introduced in Section 2.

as 1 = "presence", or 0 = "absence".

An empirical test of the HC axioms (up to order min(I−1, J−1)−1), on a data set θ̂, amounts

to the test of the composite null hypothesis (H0) that H0 : θ ∈ AHC . Likewise, empirical tests of

single, double, triple cancellation, and so on, refer to tests of composite null hypothesis H0 : θ ∈

ASC , H0 : θ ∈ ADC , H0 : θ ∈ ATC , ..., respectively. Perline et al. (1979) tested double cancellation

on 3 × 3 sub-matrices of the Parole data θ̂ using multiple hypothesis tests (resp.). Arguably, the

results of such tests are diffi cult to summarize because of the dependence between these tests, and

due to Type I error rate inflation that arises from the multiple testing.

This motivated Karabatsos (2001) to propose a Bayesian beta-binomial model for testing the

cancellation axioms. For the test of the null H0 : θ ∈ AHC that the data θ̂ satisfy cancellation up

to order min(I − 1, J − 1)− 1, this model has a posterior distribution with p.d.f. given by:

π(θ | r,n, AHC) ∝
I∏
i=1

J∏
j=1

(
nij
rij

)
θ
aij+rij
ij (1− θij)bij+nij−rijbe(θij | aij , bij)1(θ ∈ AHC), (1)

up to a normalizing constant, where 1(·) is the (0 or 1 valued) indicator function. As shown in
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(1), the model is defined by a product of IJ independent binomial likelihoods, and beta prior

distributions (p.d.f.s) truncated into the parameter subspace AHC ⊆ [0, 1]IJ , by 1(θ ∈ AHC). The

beta p.d.f. is be(θ | a, b) = Γ(a)Γ(b)
Γ(a+b) θ

a−1(1−θ)b−1, where Γ is the gamma function. A non-informative

uniform (aij = bij = 1) or reference (aij = bij = 1/2) prior is typically chosen in practice.

Then, for the Parole data, a test of theHC axioms (up to ordermin(I−1, J−1)−1) corresponds

to a test of the null hypothesis that θ = (θij)9×9 ∈ AHC ⊆ [0, 1]81, such that
(

9
3

)(
9
3

)
= 7 056 of

the 3 × 3 sub-matrices satisfy double cancellation, and so on for the higher-order cancellation

axioms. The subset AHC is complex, because of the very large numbers of sub-matrices involved,

and because the HC axioms are highly interdependent (Kyngdon & Richards, 2007). Then, the

posterior distribution (1) is analytically intractable, mainly because it depends on 1(θ ∈ AHC).

This led Karabatsos (2001) to propose an empirical Bayes approach to testing H0 : θ ∈ AHC .

This involved testingH0 : θ ∈ ÂHC and using 1(θ ∈ ÂHC) instead of 1(θ ∈ AHC) in the prior in (1).

Here, ÂHC is the simple linear ordering that is defined by the matrix θ̂R = (θ̂Rij =
exp(β̂i−δ̂j)

1+exp(β̂i−δ̂j)
)I×J

of MLE estimates of the Rasch model parameters, so that ÂHC ⊆ AHC . Then, based on this linear

ordering, inference of the empirical Bayes version π(θ | r,n, ÂHC) of the posterior p.d.f. (1) can

proceed through the use of standard (Metropolis or Gibbs) MCMC sampling algorithms (Gelfand,

et al. 1992; Karabatsos, 2001). Using MCMC, the test of the null H0 : θ ∈ ÂHC proceeds by

comparing the estimated marginal posterior distribution of each individual element of θ from the

joint posterior π(θ | r,n, ÂHC), with each corresponding element of the data set θ̂. This could be

done by inference of marginal posterior distribution of the residuals θij − θ̂ij , for each i and j.

To summarize, in order to deal with the analytical intractability of the parameter subset AHC ,

this empirical Bayes approach makes use of the more-tractable linear-order subset ÂHC in order to

provide a computational-tractable posterior distribution (p.d.f.), π(θ | r,n, ÂHC). The trade-off is

that posterior uncertainty in θ is not fully accounted for, because ÂHC is fixed.
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For the problem of testing single and double cancellation, that is, testing the null H0 : θ ∈

ASC ∩ ADC , Domingue (2014) adopted Karabatsos’ general Bayesian beta-binomial model (1),

using 1(θ ∈ ASC ∩ ADC) instead of 1(θ ∈ AHC) in the model prior. For this testing problem, he

devised an ingenious and complex Metropolis MCMC sampling algorithm to perform inference of the

posterior π(θ | r,n, ASC ∩ADC), which can search over regions of the complex subspace ASC ∩ADC

of θ that have posterior support. For the Parole data example, it can search over the 7 056 3×3 sub-

matrices. However, this MCMC method does not directly address the original problem of testing

the null hypothesis, H0 : θ ∈ AHC . This is because testing higher-order cancellation conditions,

such as triple cancellation, is a computationally-intractable problem, which would require searching

over a very large number
(
I
4

)(
J
4

)
of the total 4× 4 sub-matrices of θ (Domingue, 2014, p.16). This

is 15 876 for the modest-sized Parole data. The fact that an ingenious MCMC method (Domingue,

2014) was needed to perform a full Bayesian test of cancellation up to order 2, may suggest that

MCMC methods are not fully appropriate for the Bayesian testing of the complex and correct

hypothesis, H0 : θ ∈ AHC .

The complexities mentioned in Sections 1.1-2, also suggest that focusing on individualized tests

of cancellation axioms may not provide the best approach. This motivates the development of the

new Bayesian omnibus test of the entire hierarchy of cancellation (HC) axioms, presented in §2. It

is based on the synthetic likelihood method, and the PAVA estimator, reviewed next.

1.3 The Synthetic Likelihood (SL) Method for Approximate Bayesian Inference

The synthetic likelihood (SL) method, which is well-established by now (e.g., Wood, 2010; Price et

al. 2017), can be used to perform approximate Bayesian inference for a model that is defined by a

likelihood that is computationally and/or analytically intractable. In order to describe the general

SL method, we need to set more notation. Denote L(yn |θ) as a model’s likelihood probability
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density (or mass) function for a data set yn of sample size n, conditionally on a value of the

model parameters, θ. Assume that the (exact) likelihood, L(yn |θ), is intractable, but that it

is still possible to generate samples of (synthetic) data sets zn from it. Let π(θ) be the prior

p.d.f. defined on the space Θ of θ. The posterior p.d.f. is π(θ |yn) = L(yn |θ)π(θ)h−1(yn)

(with h(yn) =
∫
L(yn |θ)π(θ)dθ). However, it cannot be easily computed due to the intractable

likelihood.

The SL method addresses this intractability, as follows. Let t(yn) be a vector of k chosen

summary statistics of the data set yn, which have a large-sample asymptotic multivariate normal

distribution with p.d.f. normk(t |µ,Σ) = exp{−(1/2)(t−µ)ᵀΣ−1(t−µ)}
(2π)k/2|Σ|1/2 . The SL method approximates

the posterior π(θ |yn) by replacing the intractable likelihood L(yn |θ) with a tractable likelihood

that is defined by (e.g., Price et al. 2017, eq. 5):

L∗(t(yn) |θ) =

∫
· · ·
∫

normk(t(yn) | µ̂t, Σ̂t)
N∏
m=1

Lt(t(z(m)
n ) |θ)dt(z(1)

n ) · · · dt(z(N)
n ). (2)

Using Monte Carlo sampling methods, an unbiased estimate of (2) is given by:

z(s,1)
n , . . . , z(s,N)

n
i.i.d.∼ L(zn |θ), for s = 1, . . . , S, (3a)

µ̂
(s)
t = 1

S

∑S

s=1
t(z

(s)
n ); Σ̂

(s)
t = 1

S−1

∑S

s=1
(t(z

(s)
n )− µ̂(s)

t )(t(z
(s)
n )− µ̂(s)

t )ᵀ; (3b)

L̂∗(t(yn) |θ) = 1
S

∑S

s=1
normk(t(yn) | µ̂(s)

t , Σ̂
(s)
t ), (3c)

where (µ̂
(s)
t , Σ̂

(s)
t ) is the MLE of the mean (µ) and covariance matrix (Σ) of {t(z

(s,1)
n ), . . . , t(z

(s,N)
n )},

from N samples of synthetic data sets zn from L(· |θ). Here, N is chosen to be large.

The SL method, when embedded into a Metropolis MCMC sampling algorithm (Wood, 2010),

is described in Algorithm 1, below. This algorithm is run for a suffi ciently-large number (S) of
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iterations, so that the resulting samples {θ(1), . . . ,θ(S)} converge to the approximate posterior

p.d.f. (distribution), given by π(θ | t(yn)) ∝ L∗(t(yn) |θ)π(θ), up to a normalizing constant.

The SL method can be extended to handle non-normally distributed summary statistics (Gut-

mann & Corander, 2016, §3.3) by replacing the normal p.d.f. norm(· | µ̂t, Σ̂t) in (2) with a kernel

p.d.f. estimate obtained from the synthetic data (Silverman, 1986). The SL method can also

be embedded into an importance sampling algorithm, an alternative to the Metropolis algorithm

(Robert & Casella, 2004). More details are given in Section 2.

Algorithm 1. The General SL Metropolis MCMC Algorithm.

for s = 1 to S, do:

(a) Draw θ∗ ∼ G(θ | θ(s−1)) from a symmetric proposal distribution, G;

(b) Draw N synthetic data sets of size n by z
(s,1)
n , . . . , z

(s,N)
n

i.i.d.∼ L(zn |θ∗),

then calculate the MLE (µ̂
(s)
t , Σ̂

(s)
t ) from summary statistics, t(z

(s,1)
n ), . . . , t(z

(s,N)
n );

(c) Accept θ(s) = θ∗ with probability min

{
1,

normk(t(yn) | µ̂(s)
t , Σ̂

(s)
t )π(θ∗)

normk(t(yn) | µ̂(s−1)
t , Σ̂

(s−1)
t )π(θ(s−1))

}
.

end for

1.4 The Pooled Adjacent Violators Algorithm (PAVA)

Now, we review the PAVA algorithm for isotonic regression smoothing of proportion data, fol-

lowing Robertson and Warrack (1985). As an example, consider a 1 × 6 vector of proportion

data (MLE), given by θ̂ = (θ̂j = rj/nj)1×6 = (.21, .10, .15, .15, .09, .10), with sample sizes n =

(33, 87, 67, 83, 58, 70) (resp.). Also, consider a hypothesized order-constraint θ1 ≥ θ2 ≥ θ3 ≥ θ4 ≥

θ5 ≥ θ6 on the six proportion parameters.

The PAVA estimator, denoted t(θ̂), is the least-squares solution of the observed proportions,

subject to that order-constraint, using weights n. For the data example, the PAVA estimate is

9



t(θ̂) = (.21, .13, .13, .13, .09, .09). This was obtained over three stages (Robertson & Warrack, 1985,

Fig. 2). The first stage started with the proportion data, t(1)(θ̂) = θ̂, which violate the order-

constraint. The second stage updates the estimate to t(2)(θ̂) = (.21, .12, .12, .15, .09, .10), where the

value .12 for the second and third entries is the pooled weighted-average of the order-violating pair

(.10, .15) in θ̂ = t(1)(θ̂), which have sample sizes (87, 67) (the weights). The final stage arrived at

the final solution, t(θ̂) = t(3)(θ̂), which satisfies the hypothesized order. Here, the value of .09 in

the last two entries of t(θ̂) is the weighted-average of the order-violating pair (.09, .10) in t(2)(θ̂),

which have sample sizes (58, 70) (weights).

Finally, for proportion data that is already consistent with the hypothesized order-constraint,

say θ̂ = (.21, .19, .17, .15, .13, .11), the PAVA estimator is given simply by t(θ̂) = θ̂.

2 The Omnibus Axiom Testing (SL) Method, with Application to the Parole Data

For testing the (correct) hypothesis H0 : θ ∈ AHC , the HC axioms up to order min(I−1, J−1)−1,

we present a novel SL method to approximate Bayesian inference. This method is based on a

truncated exact model likelihood (not truncated prior), given by:

L(r |θ) =

I∏
i=1

J∏
j=1

(
nij
rij

)
θ
rij
ij (1− θij)nij−rij1(θ ∈ AHC), (4)

and the corresponding posterior p.d.f. is given by:

π(θ | r,n, AHc) ∝
I∏
i=1

J∏
j=1

(
nij
rij

)
θ
rij
ij (1− θij)nij−rij1(θ ∈ AHC)be(θij | aij , bij). (5)

This SL method adopts the view that the likelihood (4) (and posterior, (5)) is intractable due to

the complexity of the order-constrained subspace AHC , especially when I and J are large.

The novel SL method is based on summary statistics (t(θ̂)) that are defined by a PAVA-
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smoothed version of the proportion data matrix (MLE), θ̂. Specifically, PAVA is employed to

transform the elements of θ̂ to a matrix t(θ̂) = (tij(θ̂ij))I×J which has cell values that are monotone

(non-decreasing) ordered by the corresponding cell values of the Rasch model matrix of MLEs,

θ̂Rij = (θ̂Rij =
exp(β̂i−δ̂j)

1+exp(β̂i−δ̂j)
)I×J . Then, the PAVA estimate t(θ̂) lies in the subset AHC of [0, 1]IJ

satisfying the entire hierarchy of cancellation axioms, at least approximately. The PAVA smoothing

is applied to the observed data, and also applied to samples of the synthetic data sets. This is done

in the spirit of the MONANOVA algorithm (Kruskal, 1964), which uses PAVA to transform a data

set θ̂ into data that conforms to a two-way additive ANOVA model. Here, we use the (additive)

Rasch model instead of ANOVA.

Using the PAVA estimator t(θ̂), the novel SL method approximates the posterior (5) by:

π(θ | t(θ̂)) ∝ L∗(t(θ̂) |θ)π(θ). (6)

This posterior (6) is based on the approximate likelihood (L∗), defined by:

L∗(t(θ̂) |θ) =

∫
· · ·
∫

I∏
i=1

J∏
j=1

1
Nhij

N∑
m=1
K
(

tij(θ̂ij)−tij(θ̂
(m)
ij )

hij

)
N∏
m=1

Lt(t(θ̂
(m)

ij ) |θ)dt(θ̂
(1)

ij ) · · · dt(θ̂
(N)

ij ),

(7)

where K is a smooth and symmetric kernel density (p.d.f.) function with mode 0, and hij is the

kernel bandwidth. It is assumed that the kernel is given by, with K (·) = exp(−(·)2/2)√
2π

, the p.d.f.

of the standard Normal(0, 1) distribution; along with the automatic bandwidth given by hij =

1.06σ̂t,ijN
−1/5, according to the normal reference rule. Here, σ̂t,ij is the standard deviation of the

statistics {tij(θ̂
(m)

ij )}Nm=1 over the N synthetic data sets. So, whereas the standard SL method (§1.3)

employs an approximate likelihood (2) that assumes normally-distributed summary statistics, the

new SL method employs an approximate likelihood (7) that is inferred by kernel density estimation.

Thus, the new method does not pre-suppose normality or any other specific distributional form.
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This is important because PAVA estimates (t(θ̂)) are typically not asymptotically normal (Li, 2008,

Ch.3). Further, by definition of approximate likelihood (7), the approximate posterior (6) assigns

more weight to values of θ that satisfy the order constraints of AHC , as in the exact posterior (5).

Importance sampling (IS) can be used to infer any function g(θ) of interest of the approximate

posterior (6), while using the prior π(θ) as the approximating density (p.d.f.), having c.d.f. denoted

by Π(θ). In this IS approach (F. Leisen, October 13, 2016, personal communication; Zhu et al.

2016), the inference of the integral
∫
g(θ)π(θ | t(θ̂))dθ can be re-written as the inference of:

∫
g(θ)L∗(t(θ̂) |θ)Π(dθ)∫
L∗(t(θ̂) |θ)Π(dθ)

, (8)

so that an IS estimator of (8) can be obtained by:

1
S

∑S
s=1 g(θ(s))L∗(t(θ̂) |θ(s))

1
S

∑S
s=1 L

∗(t(θ̂) |θ(s))
. (9)

Then, the likelihood L∗ in (9) is obtained by the following Monte sampling procedure:

θ(s) iid∼ π(θ), for s = 1, . . . , S, (10a)

r
(s,m)
ij

ind∼ Binomial(nij , θ
(s)
ij ), for i = 1, . . . , I, j = 1, . . . , J, and m = 1, . . . , N , (10b)

L̂∗ij(tij(θ̂ij) |θ(s)) = 1

Nh
(s)
ij

N∑
m=1
K
(

tij(θ̂ij)−tij(θ̂
(s,m)
ij )

hij

)
, (with θ̂ij = r

(s,m)
ij /nij) (10c)

L̂∗(t(θ̂) |θ(s)) =
I∏
i=1

J∏
j=1

(
L̂∗ij(tij(θ̂ij) |θ(s))

)
I×J

. (10d)

Algorithm 2, based on this IS approach and novel SL method, is shown below. It provides

the basis for the Bayesian omnibus test of the hierarchy of cancellation conditions (i.e., hypothesis

H0 : θ ∈ AHC) on a set of proportion data θ̂. (The labeling of three substeps ((a), (b), (c)) in

Algorithm 2 is used to facilitate comparison with Algorithm 1). This algorithm produces sample
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output, (θ(s),ω(s))Ss=1, of the parameters θ and the corresponding importance sampling weights

(ω(s)) . Also, it gives a basis for performing this omnibus test while accounting for posterior

uncertainty in the subspace ÂHC , as now it can vary over the N synthetic data sets, per sampling

iteration; and can vary across sampling iterations s = 1, . . . , S.

Algorithm 2. The SL Importance Sampling Algorithm for testing HC.

for s = 1 to S do

(a) Sample from prior, θ(s) ∼
I∏
i=1

J∏
j=1

be(θ | aij , bij);

(b1) Sample r(s,m) = (r
(s,m)
ij )I×J

i.i.d.∼
I∏
i=1

J∏
j=1

Binomial(nij , θ
(s)
ij ), for m = 1, . . . , N .

(b2) Find the Rasch model MLE θ̂
(s,m)

R = (θ̂
(s,m)

Rij =
exp(β̂

(s,m)
i −δ̂(s,m)j )

1+exp(β̂
(s,m)
i −δ̂(s,m)j )

)I×J ,

and obtain the PAVA estimate t(θ̂
(s,m)

= (r
(s,m)
ij /nij)I×J) = (tij(θ̂

(s,m)

ij ))I×J , for m = 1, . . . , N

(using weights n = (nij)I×J), where the cell values of t(θ̂
(s,m)

) are monotonically

(non-decreasing) ordered by the corresponding cell values of the Rasch MLE matrix

θ̂
(s,m)

R =

(
θ̂

(s,m)

Rij =
exp(β̂

(s,m)
i −δ̂(s,m)j )

1+exp(β̂
(s,m)
i −δ̂(s,m)j )

)
I×J

, to define Â(s,m)
HC , where t(θ̂

(s,m)
) ∈ Â(s,m)

HC .

(c) Set the importance sampling weights for θ∗ as ω(s) = (ω
(s)
ij ≡ L̂

∗(s)
ij (tij(θ̂ij) |θ(s)))I×J ,

where t(θ̂) = (tij(θ̂ij))I×J is the PAVA estimate (using weights, n), such that

the cell values of t(θ̂) are monotonically (non-decreasing) ordered by the

corresponding cell values of the Rasch MLE matrix θ̂R = (θ̂Rij =
exp(β̂i−δ̂j)

1+exp(β̂i−δ̂j)
)I×J

obtained from the original data (θ̂). This defines ÂHC , where t(θ̂) ∈ ÂHC .
end for

A basic quantity of interest is given by the (approximate) posterior mean θ = (θij)I×J , with

θ =
∫
θπ(θ | t(θ̂))dθ, subject to the order constraints defined by AHC . Of course, θij gives the

(approximate) posterior predictive probability of a correct response for test score group i on item

13



j, under those constraints. So, when analyzing data θ̂, the algorithm is run for a suffi ciently-large

number of iterations (S), until the sample output converges to samples to the approximate posterior

distribution (6). The estimate of the (approximate) marginal posterior mean θ of θ, subject to the

order constraints of AHC , is given by θ
(S)

= (θ
(S)
ij =

∑S
s=1 θ

(s)
ij

/∑S
s=1 ω

(s)
ij )I×J . Effective sample

size (ESS) statistics, ESS(S)
ij = 1/

∑S
s=1{ω

(s)
ij /

∑S
s=1 ω

(s)
ij }2, can be used to evaluate the convergence

of θ
(S)
to its true marginal posterior mean, θ. ESS(S)

ij ranges between 1 (very poor outcome) to S

(perfect outcome; where (θ(s))Ss=1 are i.i.d.) (Liu, 2001).

Let θ0ij =
1
2

+rij
1+nij

be the posterior mean estimate of θij under a non-informative reference

be(θij | 1
2 ,

1
2) prior (Bernardo, 1979) and no order constraints on θ, for each cell ij. The hypothesis

H0 : θ ∈ AHC can be tested by using the Kullback-Leibler (KL) divergence statistic:

D(S)
ij = θ0ij log

(
θ0ij

θ
(S)
ij

)
+ (1− θ0ij) log

(
1− θ0ij

1− θ(S)
ij

)
≥ 0. (11)

Then, the hypothesis H0 : θ ∈ AHC is rejected whenever Dij is large for one or more cells ij in

an I × J matrix, leading to the conclusion that the given data θ̂ violate the HC axioms. This

hypothesis testing procedure is based on a general method that can be used to evaluate whether

or not a simple Bayesian model (here, given by H0) can provide a reasonable approximation to a

more flexible model for the data (McCulloch, 1989) (here, this model has estimator θ0).

There are at least three advantages for using the KL divergence (D) for hypothesis testing

(see also, Karabatsos, 2006). First, it can be interpreted as a measure of information loss when

approximating the true estimated probabilities (θ0) by H0. Further, a global KL measure across

the IJ cells can be easily computed by D(S)
.. =

∑I
i=1

∑J
j=1D

(S)
ij . Second, the KL divergence can be

easily calibrated. For example, the KL value Dij = .02 amounts to using a coin that has probability

.6 of heads in one flip (i.e., (1 + [1 − exp{−2(.02)}]1/2)/2 = .6) in place of a fair coin that yields
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a probability of heads .5. Similarly, the KL value Dij = .14 amounts to using a coin that has

probability .75 of heads instead of a fair coin, and so on (McCulloch, 1989, Table 1). A zero

divergence (Dij = 0) corresponds to comparing one fair coin with another.

Third, there are large-sample asymptotic justifications for using the KL divergence (D) method

for hypothesis testing, along with Algorithm 2. Specifically, it is easy to show that if θ0 is the true

(population) value of the parameter θ, then as nij , N, S → ∞, θ0 → θ0, and further when H0 is

true such that θ0 ∈ AHC , the approximate posterior density π(θ | t(θ̂)) (in 6) converges to a point

mass at θ0, so that D(S)
ij → 0 for all IJ cells ij. These three advantages are highlighted in the

following simulation study.

2.1 Simulation Study

First, the axiom testing method was evaluated through its application to simulated data sets of

dimension 4 × 3, involving four ability levels and three test items. Each simulated data analysis

reported in this subsection assumed independent reference beta priors, chosen with hyper-prior

parameters aij = bij = 1/2, and was based on running S = 30 000 sampling iterations of Algorithm

2, using N = 100. This produced a median ESS(S)
ij value of 2807 over all simulated data sets.

First, data sets were simulated under the Rasch model, which satisfy the hypothesis H0 :

θR ∈ AHC of the hierarchy of cancellation conditions. Data sets were also simulated under 2-

parameter logistic IRT model, θ2PL =
(
θij =

exp{αj(βi−δj)}
1+exp{αj(βi−δj)}

)
4×3
, with item discrimination (slope,

αj) parameters chosen to define a probability matrix that violated the ACM axioms (i.e., θ2PL /∈

AHC). Table 2 presents the simulation study design, including the values of the person ability,

item diffi culty and discrimination parameters that were used to simulate data, along with the

corresponding 4 × 3 matrix of predicted correct item response probabilities, for the Rasch model

and for the 2PL model. Multiple data sets were simulated for sample sizes nij = 10, 20, 30, 65, 100,
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per cell ij, respectively, using the matrix of probabilities of the Rasch and of the 2PL model (i.e.,

θR and θ2PL, resp.). The underlined probabilities in Table 2 shows where the 2PL model’s matrix

of probabilities (θ2PL) violate the single cancellation axiom.

Table 3 shows the results of the analyses of the simulated 4 × 3 data sets. They are based on

analyzing each simulated data set using the Bayesian method for testing H0 : θ ∈ AHC .

Rasch model 2PL model
Item: 1 2 3 1 2 3

Diffi culty: −1.5 0 1.5 −1.5 0 1.5
Discrimination: 1 1 1 1 2 2.3

−1.5 .50 .18 .05 .50 .43 .01
Ability −.5 .73 .38 .12 .73 .48 .07
(θ) .5 .88 .62 .27 .88 .52 .41

1.5 .95 .82 .50 .95 .57 .88

Table 2: The design of the simulation study.

Rasch model 2PL model
cell sample size, nij cell sample size, nij

Ability Item 10 20 30 65 100 10 20 30 65 100

−1.5 1 .06 .00 .00 .00 .00 .21 .00 .00 .00 .00
−.5 1 .02 .00 .01 .00 .00 .00 .01 .00 .00 .01
.5 1 .00 .00 .00 .00 .00 .00 .01 .00 .00 .00
1.5 1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
−1.5 2 .00 .02 .00 .00 .00 .09 .00 .00 .00 .00
−.5 2 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01
.5 2 .00 .00 .00 .00 .00 .04 .01 .00 .05 .03
1.5 2 .00 .00 .00 .00 .00 .00 .01 .01 .01 .00
−1.5 3 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
−.5 3 .04 .02 .00 .00 .00 .00 .00 .00 .00 .00
.5 3 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
1.5 3 .02 .00 .00 .00 .00 .05 .03 .02 .08 .11

global KL= .15 .05 .02 .02 .01 .40 .07 .05 .15 .16

Table 3: The Kullback-Leibler divergence results of the simulation study (in 2 significant digits).

The results of Table 3 show that as the sample size increases for all 12 cells, the KL divergence

measures correctly converge towards zero for Rasch model simulated data, while the KL measures

tend to increasingly exceed beyond .01 for 2PL model data simulated. The latter is true especially

for the cell corresponding to ability θ = 1.5 and item 3, which violates the single cancellation axiom,
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as mentioned earlier. In conclusion, the simulation study seems to support the use of KL critical

values Dij > .01 for rejection the hypothesis H0 : θ ∈ AHC in practice. Further, the KL measures

behaved as predicted according to the large sample (n) theory mentioned earlier.

Other cell-based statistics (not shown) for testing H0 were considered to analyze these simulated

data. They include the posterior mean of standardized residual fit statistic of cell count data, and

a test of whether the data θ̂ij is contained in a 50% (or 95%) posterior credible interval of θij under

H0. However, they seemed to reject H0 too frequently and infrequently, respectfully.

Next, additional data sets were simulated under the Rasch and 2PL model (resp.). This time, a

9×9 design was used along with the same cell sample sizes as in the Parole data (Table 1). For each

model, the data were simulated according to person ability (β) and item diffi culty parameters (δ)

specified by nine equally-spaced points on the interval [−1.5, 1.5], respectively. The Rasch model’s

item discrimination parameters were set to 1. The 2PL model’s item discrimination parameters

were specified by nine equally-spaced points on the interval [.1, 5], in order to ensure that the 2PL

produced a 9× 9 matrix of probabilities that violated the HC axioms.

According to the Bayesian axiom testing method, the 2PL simulated data and the Rasch model

simulated data yielded global KL measures of D(S)
.. = 4.7 and D(S)

.. = 2.3, respectfully. For the 2PL

simulated data, 37 of the total 81 cells in the 9× 9 matrix obtained a D(S)
ij measure that exceeded

.01. Across the 81 cells, the median, third quartile, 90%ile, and maximum KL measures were .01,

.04, .16, and .44, respectively.

2.2 Parole Data Revisited

The ACM hypothesis H0 : θ ∈ AHC was tested on the Parole data (Table 1), by running Algorithm

2 for S = 30 000 sampling iterations, using N = 100, and using independent reference beta priors

with hyper-prior parameters aij = bij = 1/2. This sampling run obtained ESS values with a median
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ESS(S)
ij value of 914 across the IJ = 81 cells. A longer sampling run would not appear to change

the basic conclusions about the following results of this hypothesis test.

The asterisks in Table 1 indicate the Parole data proportions that violate the hierarchy of

cancellation axioms. They are indicated by KL measures (D(S)
ij ) exceeding .01. Across the 81

cells, the median, third quartile, 90%ile, and maximum KL measures were .02, .06, .16, and .48,

respectively. The global KL measure was D(S)
.. = 5.5. We conclude that the Parole data violate the

hierarchy of cancellation axioms. This casts doubt about whether an ACM representation exists

for these data.

3 Conclusions

Psychometricians often like to claim that cognitive abilities are continuous quantities that are mea-

sured on an interval or ratio scale. According to ACM theory, the existence of such a scale requires

that the hierarchy of cancellation axioms hold. This makes it important to devise probabilistic

tests of these axioms. One challenge in constructing such a test is that this hierarchy implies a

set of highly-interdependent order-constraints on model parameters (e.g., Domingue, 2014), which

serve as the basis for axiom testing.

As one possible way to overcome this challenge, this article introduced an omnibus test of the

entire hierarchy of cancellation axioms. This is based on a novel synthetic likelihood approach to

approximate Bayesian inference. This axiom testing approach was illustrated through the analysis

of the Parole data, and simulated data. It was straightforward to run the sampling algorithm. It

required writing only 45 lines of MATLAB code, including 6 lines to set up the Parole data analysis.

The MATLAB code, the Parole data, and all of the simulated data sets and detailed results of this

article, are provided as Supplementary Material. The code provides a simpler interpretation of

Algorithm 2.
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Finally, while this article focused on testing ACM axioms, the Bayesian testing method can also

be extended to test other ordered hypotheses. This can be achieved by making simple adjustments

to the PAVA algorithm in the code.
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